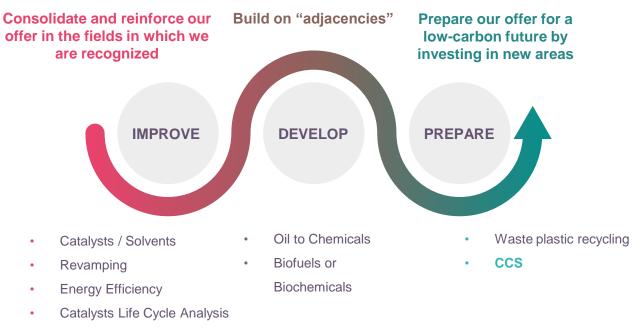
Optimized CO₂ Capture with New Demixing Solvent Technology DMX[™]

Clément Salais

- 1. Basis for Axens' Involvement in CCS
- 2. CCS a Major Tool to fight GHG Emissions
- 3. The DMX[™] Process
- 4. Techno-economic Study in the Steel Industry
- 5. Industrial demonstration of the DMX[™] Process

1 Basis for Axens' Involvement in CCS

GPA EUROPE VIRTUAL EVENT SERIES – APRIL 22ND 2021



60 Years of Operational Experience & Technology Improvement in Gas Sweetening

Xens | 4

A Strategy Embedded to Operators Challenges

Digitalization

Axens/IFPEN Involvement in CCS Projects

International International

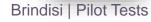
TURQUIE

EGYPTE

POLDERE

CLEMENCES.

Change 2


ALGERIE

 \bigcirc

ELENIAL

MAROC

Rhourde Nouss | CO₂ Drying

In Salah | CO₂ Drying

DMX Demonstration Dunkirk

BREVIK

CCS CLUSTER 2035 IN DUNKIRK 🗘 Total

Axens

TRL 4→7

Steel Plant

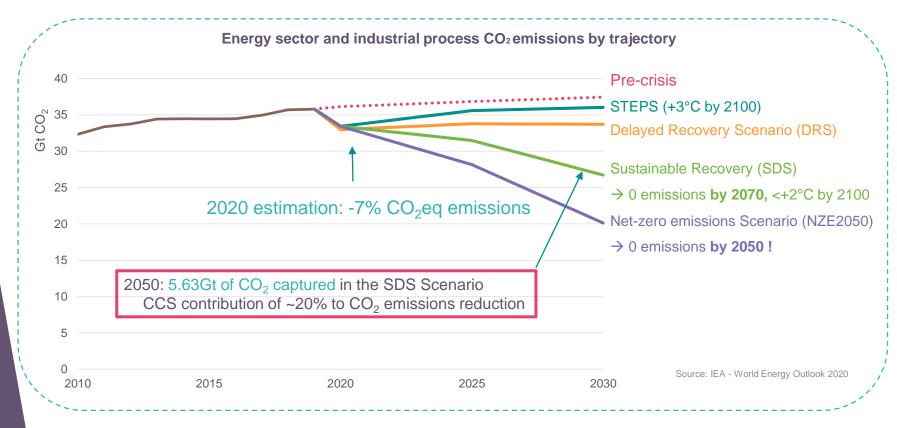
elorMittal

(acp

SSH, LCA & COST

TRI 6->7

RWTH HORD OTTAL


TRL 6->7

GPA EUROPE VIRTUAL EVENT SERIES – APRIL 22^{ND} 2021

2 CCS a Major Tool to Fight GHG Emissions

Evolution of Energy Sector Emissions – IEA Scenarios

Current CCS Facilities Around the World

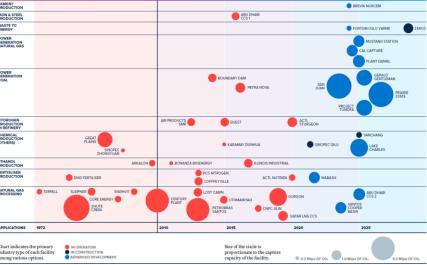
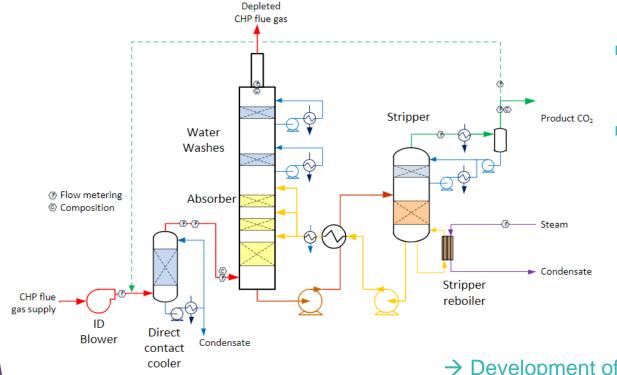


FIGURE & A PORTFOLIO OF COMMERCIAL CCS FACILITIES IN VARIOUS POWER AND INDUSTRIAL APPLICATIONS FACILITIES INCLUDE THOSE IN OPERATION, UNDER CONSTRUCTION AND IN ADVANCED DEVELOPMENT. AREA OF CIRCLES IS PROPORTIONAL TO CURRENT CCS CAPACITIES.⁽

Source: Global CCS Institute, Global Status of CCS 2020



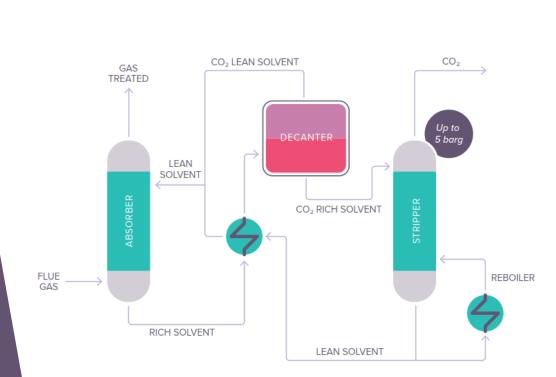
3 The DMX[™] Process

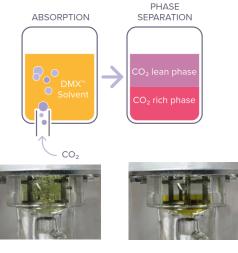
GPA EUROPE VIRTUAL EVENT SERIES - APRIL 22ND 2021

Absorption of CO₂ on Flue Gas – MEA Based Process

Energy intensive
 3.7 GJ/ton CO₂

 High solvent degradation rate


- Solvent reclaiming
- Volatile compounds
- High grade metallurgy

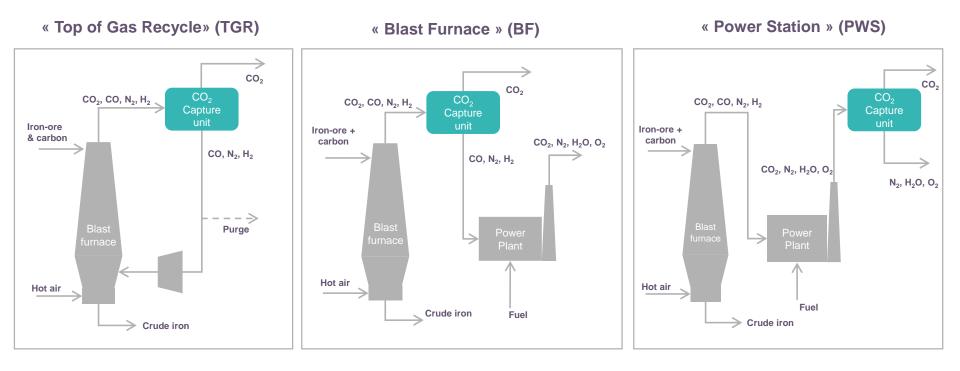

\rightarrow Development of new technologies

Courtesy of Energy Procedia, GHGT-12

Absorption of CO₂ on Flue Gas – DMX[™] Process

- DMX[™] Solvent:
 - Demixing capability
 - High capacity (4 times MEA)
 - Thermally stable
 - Low sensitive to oxygen

DMX[™] Process – Features



DMX [™] Property	Main Impact			
Higher CO_2 capacity (x4 MEA)	Lower solvent circulation rate			
Lower energy consumption for regeneration	Smaller regeneration section and lower OPEX			
Regeneration of the CO_2 rich phase only	Smaller Stripper and reboiler			
Less sensitive to O_2	Lower by product emission, lower solvent consumption			
Thermally stable solvent	CO_2 recovery under pressure (5 barg). 1 st stages of CO_2 compression not required			
High potential of energy saving: up to 30% reduction on energy penalty				

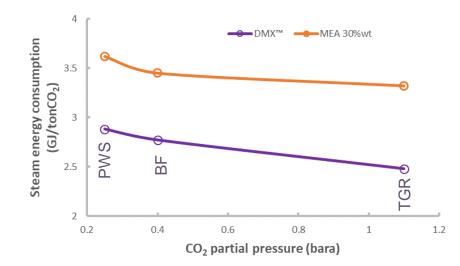
4 Techno-Economic Study in the Steel Industry

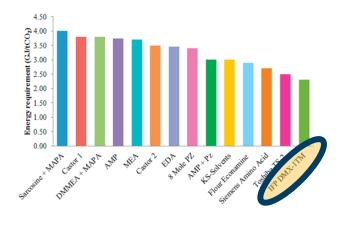
CO₂ Capture in Steel Industry: Studied Cases

GPA EUROPE VIRTUAL EVENT SERIES – APRIL 22ND 2021

CO₂ Capture in Steel Industry: Gas Characteristics

TGR and BF


- High quantities of CO
- No oxygen
- P > atm
- ► Higher PP_{CO2}


PWS

Similar to coal-fired power plant

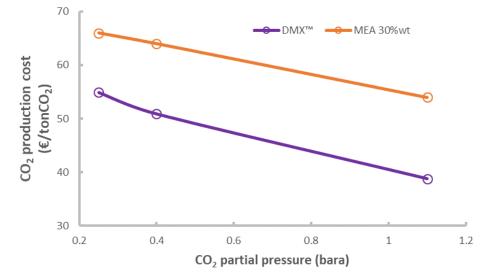
	Unit	Top Gas Recycle (TGR)	Blast Furnace (BF)	Power Station (PWS)
Flowrate	Nm ³ /h	245,000	390,000	541,700
Temperature	°C	30	80	126.9
Pressure	Bara	3.0	2.15	0.99
CO ₂ capture rate	%	> 99	90	90
H ₂	Vol.%	7.04	4.45	-
N ₂	Vol.%	9.21	46.7	63.35
O ₂	Vol.%	-	-	2.42
СО	Vol.%	46.71	25.15	-
CO ₂	Vol.%	37.04	23.70	27.10
H ₂ O	Vol.%	-	-	7.13

CO₂ Capture in Steel Industry: Techno-Economic Study

Source: Singh P. (IEAGHG), et al., Energy Procedia 37 (2013) 2021-2046, Oral présentation, GHGT-11, Kyoto, 2012.

- 30% OPEX (vs MEA)

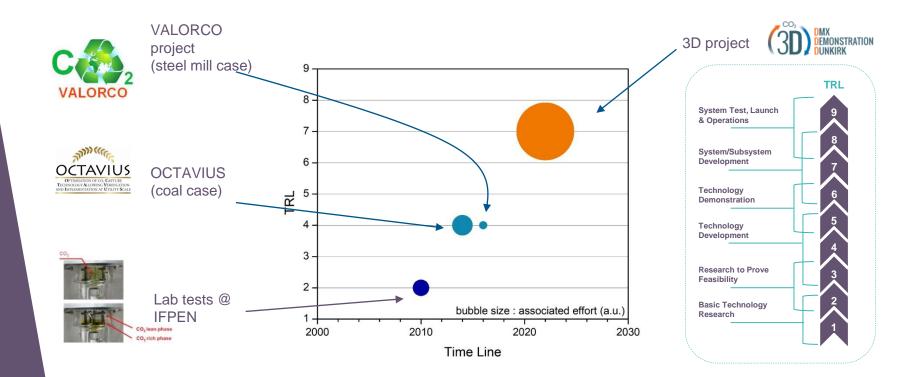
25% savings on steam energy consumption


■ 2.5 GJ/tonCO₂ achieved on TGR case with 99%⁺ capture rate

18

CO₂ Capture in Steel Industry: Techno-Economic Study

- Steam assumed to be produced by dedicated boiler
 - ≥ 21€/ton steam
- Cost of CO₂ captured
 40€/tCO₂ on TGR case
 - can be further reduced with heat integration


5 Industrial Demonstration of DMX[™]

3D & DinamX Projects

GPA EUROPE VIRTUAL EVENT SERIES – APRIL 22ND 2021

DMX[™] Process - Technology Readiness Level (TRL)

Studied cases

Cement industries (Lime production)

Waste to Energy / Incineration

 Started January 2020
 Applicability of DMX[™] Process to other French industrial emitters
 Techno-economic evaluation

The 3D Project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 8338031


Projet soutenu dans le cadre du Programme d'investissements d'avenir (PIA) opéré par l'ADEME

www.axens-solutions.net

